Detail předmětu
Základy nanověd
FSI-TZN Ak. rok: 2024/2025 Letní semestr
Předmět podává výklad základních principů nanověd s ohledem na osvětlení jejich významu pro další rozvoj nanotechnologií a souvisejících oblastí. Hlavní úsilí se zaměří na popis změn elektronové struktury spojené s kvantověmechanickým zachycením elektronů v nanostrukturách a kvantových jevů doprovázejících transportní vlastnosti nanostruktur. Budou rovněž diskutovány důsledky většího relativního počtu povrchových atomů nanočástic (ve srovnání s objemovými materiály) na chemickou reaktivitu a katalytické účinky a tepelné vlastnosti nanočástic. Souběžně budou uváděny příklady aplikací těchto kvalitativně nových jevů spadajících zejména do oblasti elektroniky a spintroniky, optoelektroniky, jakož i sensoriky a medicíny.
Jazyk výuky
čeština
Počet kreditů
4
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Základy atomové a kvantové fyziky. Pro tento předmět je prerekvizitou předmět TF4 (Moderní fyzika).
Pravidla hodnocení a ukončení předmětu
Hodnocení studenta bude zohledňovat jeho práci ve cvičení a výsledky diskuze nad zadanými tématy při zkoušce (k přípravě povoleny poznámky z přednášek).
Přítomnost na cvičení je povinná a je sledována vyučujícím. Způsob nahrazení zmeškané výuky ve cvičení bude stanovena vyučujícím na základě rozsahu a obsahu zmeškané výuky.
Učební cíle
Cílem je poskytnout přehled o kvalitativně nových jevech probíhajících v nanostrukturách a demonstrovat jejich využití v moderních oblastech vědy a techniky.
Studenti získají přehled o aktuálním stavu interdisciplinárního oboru nanověd a budou mít i snazší orientaci při výběru vlastní práce (diplomové či doktorské).
Použití předmětu ve studijních plánech
Program B-FIN-P: Fyzikální inženýrství a nanotechnologie, bakalářský, povinný
Program C-AKR-P: Akreditované předměty v CŽV, celoživotní vzdělávání v akr. stud. programu
specializace CLS: Předměty letního semestru, volitelný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
Lekce I – Základy kvantové mechaniky – přehled nutných znalostí
Popis stavu mikročástice a Schrödingerova rovnice. Formalismus kvantové mechaniky. Diracova symbolika
Lekce II – O jednorozměrných potenciálech
Potenciálová bariéra. Tunelový jev. Koeficient průchodu částice potenciálovou bariérou. Pravoúhlá potenciálová jáma. Vázané stavy. Potenciálová bariéra obecného tvaru. Rozptylové, vázané a metastabilní stavy. Dvojitá potenciálová bariéra – část I (Diracova symbolika). Dvojitá potenciálová bariéra – část II: Časový vývoj stavu. Parabolická potenciálová jáma (harmonický oscilátor). Částice v trojrozměrné krabici. Degenerace. Částice v nekonečně tuhé krabici – rozšíření o úvod do hustoty stavů. Částice v periodickém potenciálovém poli. Energiové pásy. Částice v periodickém potenciálovém poli – rozšíření o úvod do hustoty stavů
Lekce III – Kvantové jámy a nízkodimenzionální systémy
Nízko-dimenzionální systémy. Zaplnění pásů. Dvou- a tří- dimenzionální kvantové jámy.
Lekce IV – Tunelování
T- matice popisující koeficient odrazu a průchodu..Rezonanční tunelování. Supermřížky a minipásy. Mnohakanálový koherentní transport nosičů
Lekce V – Kvantové nanodráty a kvantové tečky
Nanodrát pravoúhlého průřezu. Nanodrát kruhového průřezu. Sférické a pyramidální kvantové tečky
Lekce VI – Numerické simulace – řešení Schrödingerovy rovnice u 3D, 2D, 1D nanostruktur
Metoda náhodné střelby (Shooting method). Metoda obecných počátečních podmínek
Rozšiřující materiály k doplnění studia kvantového popisu nanostruktur
Cvičení
10 hod., povinná
Vyučující / Lektor
Osnova
1. téma: Řešení Schrödingerovy rovnice v různých situacích
2. téma: Potenciálový schod a bariéra
3. téma: Určení T-matice potenciálového schodu
4. téma: Kvantová vodivost
5. téma: Určení hustoty stavů v 1D, 2D a 3D kvantově-mechanických systémech
Cvičení s počítačovou podporou
3 hod., povinná
Osnova
Viz cvičení.