Detail předmětu
Inženýrská termodynamika
FSI-KS1 Ak. rok: 2025/2026 Zimní semestr
Předmět „Inženýrská termodynamika“ je jedním z teoretických základů procesního inženýrství. Absolvování předmětu umožňuje studentům získat základní znalosti potřebné pro řešení praktických úkolů spojených s prováděním materiálových a energetických bilancí fyzikálně-chemických dějů a navrhováním a strojně-technologických soustav ve zpracovatelském a energetickém průmyslu nebo technologií zpracování odpadů. Předmět v průběhu jednoho semestru seznamuje studenty s metodami a postupy používanými pro popis stavového chování plynů a kapalin, stanovení vlastností látek a jejich směsí potřebné pro veškeré inženýrské návrhy (hustota, viskozita, tepelná vodivost, difuzivita apod.) a určování termodynamických stavových veličin a jejich změn při různých dějích. Jsou analyzovány termodynamické faktory ovlivňující průběh dějů, jejich tepelné zabarvení a podmínky termodynamické rovnováhy. Důraz je kladen na zohlednění chování plynných a kapalných systémů za reálných podmínek.
Jazyk výuky
čeština
Počet kreditů
6
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Základní znalosti matematiky (znalost integrování a derivování, řešení jednoduchých diferenciálních rovnic).
Základní znalosti termodynamiky (stavové chování ideálních plynů a kapalin, první a druhý zákon termodynamický, hlavní termodynamické veličiny).
Základní znalosti chemie (stechiometrické výpočty, koncentrační výpočty).
Pravidla hodnocení a ukončení předmětu
Zápočet je udělován na základě pravidelné účasti na cvičeních a projevů studenta na cvičeních prokazujících, že již během výukového období získal základní znalosti z předmětu a úspěšného písemného závěrečného testu prokazujícího získané znalosti z předmětu.
K získání zápočtu je dále předkládána semestrální práce, jejíž téma je zadáno během výukového období. Hlavní úkoly semestrální práce jsou postupně probírány na cvičeních.
Zkouška je písemnou formou (on-line test Moodle). Absolvent musí prokázat schopnost samostatného řešení zadaných úloh dotýkající se rozsahu výuky a dále prokázat teoretické znalosti z oblasti zaměření předmětu a odpřednášené látky. Celkové hodnocení zohledňuje rovněž výsledky zápočtových testů a úroveň zpracování semestrální práce.
Výuka probíhá formou přednášek prezentovaných v posluchárně s vhodným prezentačním prostředkem. Účast na přednáškách je doporučená. Doprovodný text v elektronické podobě mají studenti k dispozici. Cvičení probíhají v určené učebně a navazují na odpřednášenou látku. Účast na cvičeních je povinná a je kontrolována.
Učební cíle
Kurz má za úkol seznámit studenty se základními termodynamickými zákonitostmi průběhu dějů v průmyslových zařízeních a naučit studenty provádět základní hmotnostní a energetické rozvahy těchto dějů.
Předmět studenty seznamuje s širokým spektrem látkových vlastností, které jsou důležité pro bilanční, hydraulické, tepelné a difuzní výpočty procesních zařízení. Získané znalosti umožní studentům pochopit vliv pracovních podmínek na průběh a výsledek dějů v technologických zařízeních.
Kurz má za úkol seznámit studenty se základními zákonitostmi při průběhu fyzikálně-chemických dějů a naučit provádět hmotnostní a energetické rozvahy těchto dějů. Získané znalosti a dovednosti mají zásadní důležitost pro praxi procesního inženýra.
Použití předmětu ve studijních plánech
Program N-PRI-P: Procesní inženýrství, magisterský navazující, povinný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Osnova
- Úvod do předmětu Inženýrské termodynamiky. Představení cílů předmětu, zaměření semestrálních prací. Plán přednášek, dostupné materiály a literatura. Paměťové techniky pro pamatování čísel a fyzikálních konstant. Opakování základních termodynamických zákonů a návaznost na další předměty.
- Hlavní používané jednotky v praxi procesního inženýra. Vyjadřování koncentrací, přepočty fyzikálních veličin vyjádřených v různých jednotkách a soustavách (anglosaské a SI).
- Stavové chování plynů a kapalin. Odchylky od ideálního chování plynů a kapalin. Fázové diagramy a stavové rovnice plynů.
- Transportní vlastnosti plynných a kapalných látek a jejich směsí. Hustota tekutin.
- Měrné teplo a entalpie. První věta termodynamická a její aplikace. Určení měrného tepla a entalpie individuálních látek a plynných směsí. Závislost měrné entalpie reálných plynů na teplotě a tlaku.
- Reakční teplo, Hessův zákon, Kirchhoffův zákon. Spalné teplo a výhřevnost. Spalování plynných paliv a uhlovodíků.
- Komprese a expanze plynů. Adiabatické děje, Poissonovy rovnice.
- Izoenthalpický děj a Joule-Thomsonův koeficient. Hustota plynů, kapalin a jejich směsí.
- Další termodynamické funkce a vlastnosti (vnitřní energie, entropie, Gibbsova energie, Helmholzova funkce). Vliv teploty a tlaku na termodynamické vlastnosti reálných plynných a kapalných soustav. Druhá věta termodynamická.
- Podmínky termodynamické rovnováhy dějů, chemický potenciál, fugacita.
- Fázová rovnováha v jednosložkovém systému. Clausius-Clapeyronova rovnice a její aplikace pro určení výparného tepla a tlaku nasycených par.
- Fázové rovnováhy kapalina-plyn. Ideální a reálné roztoky. Raoultův zákon, spojený Raoultův a Daltovův zákon a jejich využití. Henryho zákon a jeho aplikace.
- Rekapitulace nejdůležitějších poznatků a vybraných kapitol.
Cvičení s počítačovou podporou
26 hod., povinná
Osnova
Cvičení z předmětu jsou prováděna formou řešení typových příkladů k probrané problematice. Část cvičení je věnována probráním konkrétních úkolů semestrálních prací, část cvičení je výpočtová.
Studenti pracují na počítačích nebo počítají ručně a samostatně řeší problémy z oblastí:
-Přepočty koncentrací, stavové chování id. plynů.
-Hmotnostní a energetická bilance ustálených a neustálených systémů.
-Komprese/expanze plynů a spotřeba/získání energie.
-Aplikace stavové rovnice plynů pro reálné plyny.
-Výpočet termodynamických vlastností (entalpie, měrné teplo, entropie, Gibbsova energie) reálných systémů.
-Výpočet fyzikálních vlastností reálných plynů a kapalin (hustota, viskozita, tepelná vodivost).
-Výpočty reakčních a spalných tepel, výhřevností
-Výpočet rovnovážného stupně konverze a rovnovážného složení.
-Výpočet fugacity a aktivity reálných plynných a kapalných systémů.
-Výpočet tlaku nasycených par a výparného tepla.
-Bilance spalování plynného paliva a složení vlhkého vzduchu.
-Fázové rovnováhy plyn-kapalina.
-Výpočet složení spalovacího vzduchu.