Detail předmětu
Fourierova analýza
FSI-SFA-A Ak. rok: 2025/2026 Zimní semestr
Předmět se zabývá základními pojmy Fourierovy analýzy a její ilustrací na konkrétních příkladech. Jsou především probrány otázky reprezentace funkcí pomocí trigonometrického systému, Fourierova a Laplaceova transformace, jejich vlastnosti a aplikace.
Jazyk výuky
angličtina
Počet kreditů
4
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Matematická analýza, základy lineární funkcionální analýza, míra a integrál.
Pravidla hodnocení a ukončení předmětu
Účast na cvičení je povinná.
Zápočet: aktivní účast ve cvičeních, úspěšné napsání kontrolní práce.
Zkouška – praktická část: ilustrace pojmů na konkrétních příkladech.
Teoretická část: otázky z přednesené látky.
V případě nepřítomnosti si student musí doplnit zameškanou látku samostudiem z literatury.
Učební cíle
Seznámit a naučit studenty pracovat se základními pojmy a metodami Fourierovy analýzy, které jsou využívány v dalších matematických předmětech.
Znalost základních pojmů a metod Fourierovy analýzy, zejména Fourierových řad, Fourierovy a Laplaceovy transformace a schopnost tyto pojmy prakticky využívat.
Použití předmětu ve studijních plánech
Program N-AIM-A: Applied and Interdisciplinary Mathematics, magisterský navazující, povinný
Program N-MAI-P: Matematické inženýrství, magisterský navazující, volitelný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Osnova
1. Prostor integrovatelných funkcí – definice a základní vlastnosti, husté podmnožiny, věty o limitních přechodech.
2. Prostor kvadraticky integrovatelných funkcí – konvergence v průměru druhého stupně, Fourierova řada.
3. Singulární integrály – definice, věta o reprezentaci, aplikace pro Fourierovy řady.
4. Trigonometrické řady.
5. Fourierův integrál.
6. Fourierova transformace – Fourierova transformace (FT), inverzní vzorec, základní vlastnosti FT, úplnost systému Hermitových a Laguerových funkcí, FT a konvoluce funkcí, aplikace.
7. Plancherelova věta, Hermitovy funkce.
8. Laplacova transformace.
Cvičení
13 hod., povinná
Osnova
1. Prostor integrovatelných funkcí – definice a základní vlastnosti, husté podmnožiny, věty o limitních přechodech.
2. Prostor kvadraticky integrovatelných funkcí – konvergence v průměru druhého stupně, Fourierova řada.
3. Singulární integrály – definice, věta o reprezentaci, aplikace pro Fourierovy řady.
4. Trigonometrické řady.
5. Fourierův integrál.
6. Fourierova transformace – Fourierova transformace (FT), inverzní vzorec, základní vlastnosti FT, úplnost systému Hermitových a Laguerových funkcí, FT a konvoluce funkcí, aplikace.
7. Plancherelova věta, Hermitovy funkce.
8. Laplacova transformace.