Detail předmětu

Vybrané kapitoly z matematiky I

FSI-T1K Ak. rok: 2025/2026 Letní semestr

Kurs obsahuje vybrané kapitoly z funkcionální analýzy nutné pro fyzikální aplikace. Zabývá se prostory funkcí, ortogonálními systémy funkcí a ortogonálními transformacemi a jejich aplikacemi ve fyzice.

Jazyk výuky

čeština

Počet kreditů

3

Zajišťuje ústav

Vstupní znalosti

Analýza v reálném a komplexním oboru

Pravidla hodnocení a ukončení předmětu

Zápočet na základě testu
Zkouška písemná  i ústní


Nahrazení zameškané výuky je možné absolvováním testu.

Učební cíle

Kurs rozšiřuje základní kurs matematické algebry a analýzy o vybrané oblasti nutné ve fyzikálních aplikacích.


Základy funkcionální analýzy, metrické, vektorové a unitární prostory, Hilbertův prostor, ortogonální systémy funkcí, Fourierovy řady, ortogonální transformace, Fourierova transformace, fyzikální aplikace uvedených oblastí

Použití předmětu ve studijních plánech

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Osnova

1. Relace, ekvivalence, faktor množina, grupa izomorfizmus
2. Metrický prostor, úplný metrický prostor, zúplnění
3. Kontrakce, Banachova věta a její aplikace
4. Vektorový prostor, báze, dimenze, izomorfizmus
5. Automorfizmus vektorových prostorů, vlastní vektory a vlastní čísla
6. Normovaný prostor, unitární prostor
7. Ortogonální a ortonormální báze, isomorfizmus
8. Hilbertův prostor, isomorfizmus, prostory L2 a l2
9. Ortonormální báze fukcí, Fourierovy řady
10. Komplexní tvar Fourierovy řady, diskrétní Fourierova transformace
11. Užití Fourierovy transformace, věta o konvoluci
12. Prostor L2 pro funkce více proměnných
13. Operátory a funkcionály na Hilbertově prostoru


 

Cvičení

13 hod., povinná

Osnova

1. Relace, ekvivalence, faktor množina, grupa izomorfizmus
2. Metrický prostor, úplný metrický prostor, zúplnění
3. Kontrakce, Banachova věta a její aplikace
4. Vektorový prostor, báze, dimenze, izomorfizmus
5. Automorfizmus vektorových prostorů, vlastní vektory a vlastní čísla
6. Normovaný prostor, unitární prostor
7. Ortogonální a ortonormální báze, isomorfizmus
8. Hilbertův prostor, isomorfizmus, prostory L2 a l2
9. Ortonormální báze fukcí, Fourierovy řady
10. Komplexní tvar Fourierovy řady, diskrétní Fourierova transformace
11. Užití Fourierovy transformace, věta o konvoluci
12. Prostor L2 pro funkce více proměnných
13. Operátory a funkcionály na Hilbertově prostoru