Detail publikace

Oxidace CO a H2 na Pt / Fe3O4 modelovém katalyzátoru studovaná na atomární úrovni

BLIEM, R. VAN DER HOEVEN, J. ZÁVODNÝ, A. GAMBA, O. PAVELEC, J. DE JONGH, P. SCHMID, M. DIEBOLD, U. PARKINSON, G.

Český název

Oxidace CO a H2 na Pt / Fe3O4 modelovém katalyzátoru studovaná na atomární úrovni

Anglický název

An Atomic-Scale View of CO and H2 Oxidation on a Pt/Fe3O4 Model Catalyst

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

Metal–support interactions are frequently invoked to explain the enhanced catalytic activity of metal nanoparticles dispersed over reducible metal oxide supports, yet the atomicscale mechanisms are rarely known. In this report, scanning tunneling microscopy was used to study a Pt1-6/Fe3O4 model catalyst exposed to CO, H2, O2, and mixtures thereof at 550 K. CO extracts lattice oxygen atoms at the cluster perimeter to form CO2, creating large holes in the metal oxide surface. H2 and O2 dissociate on the metal clusters and spill over onto the support. The former creates surface hydroxy groups, which react with the support, ultimately leading to the desorption of water, while oxygen atoms react with Fe from the bulk to create new Fe3O4(001) islands. The presence of the Pt is crucial because it catalyzes reactions that already occur on the bare iron oxide surface, but only at higher temperatures.

Český abstrakt

Publikace se zabývá oxidací CO a H2 na Pt atomech a nanoklasterech an Fe3O4 modelovém katalyzátoru studovaná na atomární úrovni pomocí rastrovací tunelové mikroskopie.

Anglický abstrakt

Metal–support interactions are frequently invoked to explain the enhanced catalytic activity of metal nanoparticles dispersed over reducible metal oxide supports, yet the atomicscale mechanisms are rarely known. In this report, scanning tunneling microscopy was used to study a Pt1-6/Fe3O4 model catalyst exposed to CO, H2, O2, and mixtures thereof at 550 K. CO extracts lattice oxygen atoms at the cluster perimeter to form CO2, creating large holes in the metal oxide surface. H2 and O2 dissociate on the metal clusters and spill over onto the support. The former creates surface hydroxy groups, which react with the support, ultimately leading to the desorption of water, while oxygen atoms react with Fe from the bulk to create new Fe3O4(001) islands. The presence of the Pt is crucial because it catalyzes reactions that already occur on the bare iron oxide surface, but only at higher temperatures.

Klíčová slova česky

Mars-van Krevelen mechanismus; interakce kov-suport; povrchový oxid; rostrovaníc sondová mikroskopie; katalyzátory

Klíčová slova anglicky

Mars–van Krevelen mechanism; metal– support interactions; oxide surfaces; scanning probe microscopy; supported catalysts

Rok RIV

2015

Vydáno

16.11.2015

ISSN

1433-7851

Ročník

54

Číslo

47

Strany od–do

13999–14002

Počet stran

4

BIBTEX


@article{BUT118990,
  author="Roland {Bliem} and Jessi {van der Hoeven} and Adam {Závodný} and Oscar {Gamba} and Jiří {Pavelec} and Petra E. {de Jongh} and Michael {Schmid} and Ulrike {Diebold} and Gareth S. {Parkinson},
  title="An Atomic-Scale View of CO and H2 Oxidation on a Pt/Fe3O4 Model Catalyst",
  year="2015",
  volume="54",
  number="47",
  month="November",
  pages="13999--14002",
  issn="1433-7851"
}