Detail publikace
Oxidace CO a H2 na Pt / Fe3O4 modelovém katalyzátoru studovaná na atomární úrovni
BLIEM, R. VAN DER HOEVEN, J. ZÁVODNÝ, A. GAMBA, O. PAVELEC, J. DE JONGH, P. SCHMID, M. DIEBOLD, U. PARKINSON, G.
Český název
Oxidace CO a H2 na Pt / Fe3O4 modelovém katalyzátoru studovaná na atomární úrovni
Anglický název
An Atomic-Scale View of CO and H2 Oxidation on a Pt/Fe3O4 Model Catalyst
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
Metal–support interactions are frequently invoked to explain the enhanced catalytic activity of metal nanoparticles dispersed over reducible metal oxide supports, yet the atomicscale mechanisms are rarely known. In this report, scanning tunneling microscopy was used to study a Pt1-6/Fe3O4 model catalyst exposed to CO, H2, O2, and mixtures thereof at 550 K. CO extracts lattice oxygen atoms at the cluster perimeter to form CO2, creating large holes in the metal oxide surface. H2 and O2 dissociate on the metal clusters and spill over onto the support. The former creates surface hydroxy groups, which react with the support, ultimately leading to the desorption of water, while oxygen atoms react with Fe from the bulk to create new Fe3O4(001) islands. The presence of the Pt is crucial because it catalyzes reactions that already occur on the bare iron oxide surface, but only at higher temperatures.
Český abstrakt
Publikace se zabývá oxidací CO a H2 na Pt atomech a nanoklasterech an Fe3O4 modelovém katalyzátoru studovaná na atomární úrovni pomocí rastrovací tunelové mikroskopie.
Anglický abstrakt
Metal–support interactions are frequently invoked to explain the enhanced catalytic activity of metal nanoparticles dispersed over reducible metal oxide supports, yet the atomicscale mechanisms are rarely known. In this report, scanning tunneling microscopy was used to study a Pt1-6/Fe3O4 model catalyst exposed to CO, H2, O2, and mixtures thereof at 550 K. CO extracts lattice oxygen atoms at the cluster perimeter to form CO2, creating large holes in the metal oxide surface. H2 and O2 dissociate on the metal clusters and spill over onto the support. The former creates surface hydroxy groups, which react with the support, ultimately leading to the desorption of water, while oxygen atoms react with Fe from the bulk to create new Fe3O4(001) islands. The presence of the Pt is crucial because it catalyzes reactions that already occur on the bare iron oxide surface, but only at higher temperatures.
Klíčová slova česky
Mars-van Krevelen mechanismus; interakce kov-suport; povrchový oxid; rostrovaníc sondová mikroskopie; katalyzátory
Klíčová slova anglicky
Mars–van Krevelen mechanism; metal– support interactions; oxide surfaces; scanning probe microscopy; supported catalysts
Rok RIV
2015
Vydáno
16.11.2015
ISSN
1433-7851
Ročník
54
Číslo
47
Strany od–do
13999–14002
Počet stran
4
BIBTEX
@article{BUT118990,
author="Roland {Bliem} and Jessi {van der Hoeven} and Adam {Závodný} and Oscar {Gamba} and Jiří {Pavelec} and Petra E. {de Jongh} and Michael {Schmid} and Ulrike {Diebold} and Gareth S. {Parkinson},
title="An Atomic-Scale View of CO and H2 Oxidation on a Pt/Fe3O4 Model Catalyst",
year="2015",
volume="54",
number="47",
month="November",
pages="13999--14002",
issn="1433-7851"
}