Detail publikace

Asymptotics of perturbed discrete Euler equations in the critical case

ŘEHÁK, P.

Anglický název

Asymptotics of perturbed discrete Euler equations in the critical case

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

We consider the difference equation Delta(2)y(k) + p(k)y(k + 1) = 0 under the condition lim(k ->infinity) k(2)p(k) = 1/4; such a setting can cover various perturbations of the critical (double root) case in Euler type difference equations. We establish precise asymptotic formulae for all nonoscillatory solutions. An important role is played by the concept of the refined discrete regular variation, transformations of dependent and independent variable, and asymptotic theory of dynamic equations on time scales. (C) 2020 Elsevier Inc. All rights reserved.

Anglický abstrakt

We consider the difference equation Delta(2)y(k) + p(k)y(k + 1) = 0 under the condition lim(k ->infinity) k(2)p(k) = 1/4; such a setting can cover various perturbations of the critical (double root) case in Euler type difference equations. We establish precise asymptotic formulae for all nonoscillatory solutions. An important role is played by the concept of the refined discrete regular variation, transformations of dependent and independent variable, and asymptotic theory of dynamic equations on time scales. (C) 2020 Elsevier Inc. All rights reserved.

Klíčová slova anglicky

Euler difference equation; Asymptotic behavior; Regular variation

Vydáno

15.04.2021

Nakladatel

ACADEMIC PRESS INC ELSEVIER SCIENCE

Místo

SAN DIEGO

ISSN

0022-247X

Ročník

496

Číslo

2

Strany od–do

1–9

Počet stran

9

BIBTEX


@article{BUT167822,
  author="Pavel {Řehák},
  title="Asymptotics of perturbed discrete Euler equations in the critical case",
  year="2021",
  volume="496",
  number="2",
  month="April",
  pages="1--9",
  publisher="ACADEMIC PRESS INC ELSEVIER SCIENCE",
  address="SAN DIEGO",
  issn="0022-247X"
}