Detail publikace
Asymptotics of perturbed discrete Euler equations in the critical case
ŘEHÁK, P.
Anglický název
Asymptotics of perturbed discrete Euler equations in the critical case
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
We consider the difference equation Delta(2)y(k) + p(k)y(k + 1) = 0 under the condition lim(k ->infinity) k(2)p(k) = 1/4; such a setting can cover various perturbations of the critical (double root) case in Euler type difference equations. We establish precise asymptotic formulae for all nonoscillatory solutions. An important role is played by the concept of the refined discrete regular variation, transformations of dependent and independent variable, and asymptotic theory of dynamic equations on time scales. (C) 2020 Elsevier Inc. All rights reserved.
Anglický abstrakt
We consider the difference equation Delta(2)y(k) + p(k)y(k + 1) = 0 under the condition lim(k ->infinity) k(2)p(k) = 1/4; such a setting can cover various perturbations of the critical (double root) case in Euler type difference equations. We establish precise asymptotic formulae for all nonoscillatory solutions. An important role is played by the concept of the refined discrete regular variation, transformations of dependent and independent variable, and asymptotic theory of dynamic equations on time scales. (C) 2020 Elsevier Inc. All rights reserved.
Klíčová slova anglicky
Euler difference equation; Asymptotic behavior; Regular variation
Vydáno
15.04.2021
Nakladatel
ACADEMIC PRESS INC ELSEVIER SCIENCE
Místo
SAN DIEGO
ISSN
0022-247X
Ročník
496
Číslo
2
Strany od–do
1–9
Počet stran
9
BIBTEX
@article{BUT167822,
author="Pavel {Řehák},
title="Asymptotics of perturbed discrete Euler equations in the critical case",
year="2021",
volume="496",
number="2",
month="April",
pages="1--9",
publisher="ACADEMIC PRESS INC ELSEVIER SCIENCE",
address="SAN DIEGO",
issn="0022-247X"
}