Detail publikace

Existence and exact multiplicity of positive periodic solutions to forced non-autonomous Duffing type differential equations

ŠREMR, J.

Anglický název

Existence and exact multiplicity of positive periodic solutions to forced non-autonomous Duffing type differential equations

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

The paper studies the existence, exact multiplicity, and a structure of the set of positive solutions to the periodic problem u''=p(t)u+q(t,u)u+f (t); u(0)=u(\omega), u'(0)=u'(\omega), where p, f\in L([0,\omega]) and q : [0,\omega]\times R\to R is Carathéodory function. Obtained general results are applied to the forced non-autonomous Duffing equation u'' = p(t)u+h(t)|u|^\lambda\sgn u+f (t), with \lambda>1 and a non-negative h\in L([0,\omega]). We allow the coefficient p and the forcing term f to change their signs.

Anglický abstrakt

The paper studies the existence, exact multiplicity, and a structure of the set of positive solutions to the periodic problem u''=p(t)u+q(t,u)u+f (t); u(0)=u(\omega), u'(0)=u'(\omega), where p, f\in L([0,\omega]) and q : [0,\omega]\times R\to R is Carathéodory function. Obtained general results are applied to the forced non-autonomous Duffing equation u'' = p(t)u+h(t)|u|^\lambda\sgn u+f (t), with \lambda>1 and a non-negative h\in L([0,\omega]). We allow the coefficient p and the forcing term f to change their signs.

Klíčová slova anglicky

Positive periodic solution;second-order differential equation;Duffing equation;existence;uniqueness;multiplicity

Vydáno

08.09.2021

Nakladatel

Bolyai Institute, University of Szeged

Místo

Hungary

ISSN

1417-3875

Ročník

2021

Číslo

62

Strany od–do

1–33

Počet stran

33

BIBTEX


@article{BUT172441,
  author="Jiří {Šremr},
  title="Existence and exact multiplicity of positive periodic solutions to forced non-autonomous Duffing type differential equations",
  year="2021",
  volume="2021",
  number="62",
  month="September",
  pages="1--33",
  publisher="Bolyai Institute, University of Szeged",
  address="Hungary",
  issn="1417-3875"
}