Detail publikace
Hybrid Prediction-Driven High-Throughput Sustainability Screening for Advancing Waste-to-Dimethyl Ether Valorization
Fozer, Daniel Nimmegeers, Philippe Toth, Andras Jozsef Varbanov, Petar Sabev Klemes, Jiri Jaromir Mizsey, Peter Hauschild, Michael Zwicky Owsianiak, Mikolaj
Anglický název
Hybrid Prediction-Driven High-Throughput Sustainability Screening for Advancing Waste-to-Dimethyl Ether Valorization
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
Assessing the prospective climate preservation potential of novel, innovative, but immature chemical production techniques is limited by the high number of process synthesis options and the lack of reliable, high-throughput quantitative sustainability pre-screening methods. This study presents the sequential use of data-driven hybrid prediction (ANN-RSM-DOM) to streamline waste- to-dimethyl ether (DME) upcycling using a set of sustainability criteria. Artificial neural networks (ANNs) are developed to generate in silico waste valorization experimental results and ex-ante model the operating space of biorefineries applying the organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS). Aspen Plus process flowsheeting and ANN simulations are postprocessed using the response surface methodology (RSM) and desirability optimization method (DOM) to improve the in-depth mechanistic understanding of environmental systems and identify the most benign configurations. The hybrid prediction highlights the importance of targeted waste selection based on elemental composition and the need to design waste-specific DME synthesis to improve techno-economic and environmental performances. The developed framework reveals plant configurations with concurrent climate benefits (-1.241 and -2.128 kg CO2-eq (kg DME)(-1)) and low DME production costs (0.382 and 0.492 is an element of(kg DME)(-1)) using OFMSW and SS feedstocks. Overall, the multi-scale explorative hybrid prediction facilitates early stage process synthesis, assists in the design of block units with nonlinear characteristics, resolves the simultaneous analysis of qualitative and quantitative variables, and enables the high-throughput sustainability screening of low technological readiness level processes.
Anglický abstrakt
Assessing the prospective climate preservation potential of novel, innovative, but immature chemical production techniques is limited by the high number of process synthesis options and the lack of reliable, high-throughput quantitative sustainability pre-screening methods. This study presents the sequential use of data-driven hybrid prediction (ANN-RSM-DOM) to streamline waste- to-dimethyl ether (DME) upcycling using a set of sustainability criteria. Artificial neural networks (ANNs) are developed to generate in silico waste valorization experimental results and ex-ante model the operating space of biorefineries applying the organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS). Aspen Plus process flowsheeting and ANN simulations are postprocessed using the response surface methodology (RSM) and desirability optimization method (DOM) to improve the in-depth mechanistic understanding of environmental systems and identify the most benign configurations. The hybrid prediction highlights the importance of targeted waste selection based on elemental composition and the need to design waste-specific DME synthesis to improve techno-economic and environmental performances. The developed framework reveals plant configurations with concurrent climate benefits (-1.241 and -2.128 kg CO2-eq (kg DME)(-1)) and low DME production costs (0.382 and 0.492 is an element of(kg DME)(-1)) using OFMSW and SS feedstocks. Overall, the multi-scale explorative hybrid prediction facilitates early stage process synthesis, assists in the design of block units with nonlinear characteristics, resolves the simultaneous analysis of qualitative and quantitative variables, and enables the high-throughput sustainability screening of low technological readiness level processes.
Klíčová slova anglicky
artificial neural network; explorative decarbonization; hybrid machine learning; hydrothermal gasification; optimization; process synthesis; sustainable-by-design; waste-to-chemicals
Vydáno
29.08.2023
Nakladatel
AMER CHEMICAL SOC1155 16TH ST, NW, WASHINGTON, DC 20036
Místo
AMER CHEMICAL SOC1155 16TH ST, NW, WASHINGTON, DC 20036
ISSN
0013-936X
Ročník
36
Číslo
57
Strany od–do
13449–13462
Počet stran
14
BIBTEX
@article{BUT187620,
author="Petar Sabev {Varbanov} and Jiří {Klemeš},
title="Hybrid Prediction-Driven High-Throughput Sustainability Screening for Advancing Waste-to-Dimethyl Ether Valorization",
year="2023",
volume="36",
number="57",
month="August",
pages="13449--13462",
publisher="AMER CHEMICAL SOC1155 16TH ST, NW, WASHINGTON, DC 20036",
address="AMER CHEMICAL SOC1155 16TH ST, NW, WASHINGTON, DC 20036",
issn="0013-936X"
}