Detail publikace
Numerická optimalizace odlitku z keramického materiálu EUCOR
KAVIČKA, F. DOBROVSKÁ, J. STRÁNSKÝ, K. SEKANINA, B. ŠTĚTINA, J.
Český název
Numerická optimalizace odlitku z keramického materiálu EUCOR
Anglický název
Numerical optimization of the casting of ceramic material EUCOR
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
en
Originální abstrakt
Corundo-baddeleyit material (CBM) EUCOR is a heat and wear-resistant material even at extreme temperatures. This article introduces a numerical model of solidification and cooling of this material in a non-metallic mold. The model is capable of determining the total solidification time of the casting and also the place of the casting which solidifies last. Furthermore, it is possible to calculate the temperature gradient at any point and time, and also determine the local solidification time and the solidification interval of any point. The local solidification time is one of the input parameters for the cooperating model of chemical heterogeneity. This second model and its application on EUCOR samples prove that the applied method of measuring the chemical heterogeneity provides the detailed quantitative information on the material structure and makes it possible to analyze the solidification process. The analysis of this process entails statistical processing of the measurement results of the heterogeneity of the EUCOR components and performs the correlation of individual components during solidification. The verification of both numerical models was conducted on a real cast 350 x 200 x 400 mm block.
Český abstrakt
Korundo-baddeleytický materiál EUCOR je tepelně a otěruvzdorný materiál při extrémních teplotách. Je přžedložen numerický model tuhnutí a chlazení tohoto materiálu v nekovové formě. Je možné vypočítat teplotní gradient a místní interval tuhnutí v každém bodě. Místní doba tuhnutí je vstupním parametrem pro model chemické heterogenity. Jeho aplikace na vzorky EUCORu a použitá metoda měření chemické heterogenity poskytuje detailní informace o struktuře materiálu a umožňuje analyzu procesu tuhnutí.
Anglický abstrakt
Corundo-baddeleyit material (CBM) EUCOR is a heat and wear-resistant material even at extreme temperatures. This article introduces a numerical model of solidification and cooling of this material in a non-metallic mold. The model is capable of determining the total solidification time of the casting and also the place of the casting which solidifies last. Furthermore, it is possible to calculate the temperature gradient at any point and time, and also determine the local solidification time and the solidification interval of any point. The local solidification time is one of the input parameters for the cooperating model of chemical heterogeneity. This second model and its application on EUCOR samples prove that the applied method of measuring the chemical heterogeneity provides the detailed quantitative information on the material structure and makes it possible to analyze the solidification process. The analysis of this process entails statistical processing of the measurement results of the heterogeneity of the EUCOR components and performs the correlation of individual components during solidification. The verification of both numerical models was conducted on a real cast 350 x 200 x 400 mm block.
Klíčová slova česky
korundo-baddeleytický materiál, numerický model tuhnutí, model chemické heterogenity
Klíčová slova anglicky
corundo-baddeleyit material, numerical model of solidification, model of chemical heterogeneity
Rok RIV
2011
Vydáno
13.03.2011
Nakladatel
ASME
Místo
Honolulu USA
ISBN
978-0-7918-3892-1
Kniha
Proceedings of the ASME/JSME 2011 AJTEC2011
Číslo edice
8
Strany od–do
T44058–T44058
Počet stran
6
BIBTEX
@inproceedings{BUT36679,
author="František {Kavička} and Jana {Dobrovská} and Karel {Stránský} and Bohumil {Sekanina} and Josef {Štětina},
title="Numerical optimization of the casting of ceramic material EUCOR",
booktitle="Proceedings of the ASME/JSME 2011 AJTEC2011",
year="2011",
month="March",
pages="T44058--T44058",
publisher="ASME",
address="Honolulu USA",
isbn="978-0-7918-3892-1"
}