Detail publikace
Aplikace zlomkového kalkulu: Diskretizace zlomkové difuzní rovnice v jedné dimenzi
KISELA, T.
Český název
Aplikace zlomkového kalkulu: Diskretizace zlomkové difuzní rovnice v jedné dimenzi
Anglický název
Applications of the fractional calculus: On a discretization of fractional diffusion equation in one dimension
Typ
článek v časopise - ostatní, Jost
Jazyk
en
Originální abstrakt
The paper discusses the problem of the classical and fractional diffusion models. It is known that the classical one fails in heterogeneous structures with locations where particles move with a large speed for a long distance. If we replace the second derivative in the space variable in the classical diffusion equation by a fractional derivative of order less than two, we obtain the fractional diffusion equation (FDE) which is more useful in this case. In this paper we introduce a discretization of FDE based on the theory of the difference fractional calculus and we sketch a basic numerical scheme of its solving. Finally, we present some examples comparing classical and fractional diffusion models.
Český abstrakt
Článek se zabývá diskusí klasického a zlomkového difuzního modelu. Je známo, že klasický model selhává v heterogenních strukturách s oblastmi, kde se částice pohybují velkými rychlostmi na velké vzdálenosti. Pokud nahradíme druhou derivaci podle prostorové proměnné v klasické difuzní rovnici zlomkovou derivací řádu menšího než dva, získáme zlomkovou difuzní rovnici (FDE), která je pro tento případ vhodnější. V tomto článku představujeme diskretizaci FDE založenou na teorii diferenčního zlomkového kalkulu a navrhujeme jednoduché numerické schéma pro její řešení. Nakonec uvedeme několik příkladů porovnávajících klasický a zlomkový difuzní model.
Anglický abstrakt
The paper discusses the problem of the classical and fractional diffusion models. It is known that the classical one fails in heterogeneous structures with locations where particles move with a large speed for a long distance. If we replace the second derivative in the space variable in the classical diffusion equation by a fractional derivative of order less than two, we obtain the fractional diffusion equation (FDE) which is more useful in this case. In this paper we introduce a discretization of FDE based on the theory of the difference fractional calculus and we sketch a basic numerical scheme of its solving. Finally, we present some examples comparing classical and fractional diffusion models.
Klíčová slova česky
zlomková difuzní rovnice, numerické řešení, diskrétní zlomkový kalkulus
Klíčová slova anglicky
fractional diffusion equation, numerical solution, discrete fractional calculus
Rok RIV
2010
Vydáno
01.03.2010
Nakladatel
EDIS - Publishing Institution of Zilina University
ISSN
1335-4205
Časopis
Communications
Ročník
12
Číslo
1
Strany od–do
5–11
Počet stran
7
BIBTEX
@article{BUT48211,
author="Tomáš {Kisela},
title="Applications of the fractional calculus: On a discretization of fractional diffusion equation in one dimension",
journal="Communications",
year="2010",
volume="12",
number="1",
month="March",
pages="5--11",
publisher="EDIS - Publishing Institution of Zilina University",
issn="1335-4205"
}