Detail předmětu

Průmyslová automatizace

FSI-G0A Ak. rok: 2018/2019 Letní semestr

Cílem kurzu je seznámit studenty s hlavními pojmy z oblasti průmyslové automatizace a řídicích systémů v návaznosti na Industry 4.0.
První část kurzu je zaměřena na logické řízení a jeho aplikaci v současných řídicích systémech. Bude vysvětleno zavedení a použití logické funkce včetně její interpretace v prvcích sekvenčních a kombinačních obvodů. Dále bude v této části kurzu probrána minimalizace logických funkcí zejména použitím Karnaughových map.
Druhá část kurzu obsahuje základní poznatky z lineárních spojitých řídicích systémů. Řeší se zde problémy analýzy prostřednictvím impulsních a přechodových funkcí a frekvenčními metodami. Matematickým základem této části je Laplaceova transformace. Dále je zde probrána základní teorie zpětnovazebních systémů včetně jejich syntézy, vyšetřování jejich stability, přesnosti a kvality regulace.
Třetí část kurzu zahrnuje základy diskrétního řízení a jejich aplikací. Matematickým základem je Z – transformace a diferenční rovnice. Pro analýzu systémů je použita impulsní a přechodová funkce. Otázky stability jsou řešeny např. aplikací bilineární transformace. Dále je zde uveden algoritmus PSD číslicového regulátoru a jeho aplikace v současných řídicích systémech.

Jazyk výuky

čeština

Počet kreditů

4

Garant předmětu

Výsledky učení předmětu

Studenti získají základní znalosti a dovednosti z oblasti průmyslové automatizace, popisu a klasifikace řídicích systému. Budou schopni analyzovat a navrhovat základní lineární spojité i diskrétní zpětnovazební regulační systémy. Dále získají základní přehled o instrumentaci řídicího řetězce.

Prerekvizity

Základní znalosti matematiky včetně řešení systému obyčejných diferenciálních rovnic. Základní znalosti fyziky (zejména dynamiky) a elektrotechniky.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách. Výuka je doplněna laboratorním cvičením případně přednáškami odborníků z praxe nebo odbornou exkurzí.

Způsob a kritéria hodnocení

Základní podmínkou pro udělení zápočtu je aktivní absolvování všech cvičení včetně laboratorních a zpracování elaborátů podle pokynů učitele. Zápočet je udělen na základě prokázání znalostí probrané látky formou testu s příklady.
Zkouška je kombinovaná, písemná a ústní. V písemné části student shrnuje základní zadaná témata, která byla přednášena nebo odkazována v literatuře a samostatně řeší zadané příklady. Ústní část zkoušky obsahuje diskuzi o těchto úlohách a možné doplňující otázky.

Učební cíle

Cílem předmětu je formulovat a získat základní poznatky z oblasti automatického řízení, počítačového modelování, teorie a algoritmizace řídicích systémů.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na cvičení je povinná. Vedoucí cvičení provádějí průběžnou kontrolu přítomnosti studentů, jejich aktivity a základních znalostí (např. formou vstupních testů). Neomluvená neúčast je důvodem k neudělení zápočtu. Jednorázovou neúčast je možno nahradit cvičením s jinou studijní skupinou ve vyučování stejné látky cvičení. Delší neúčast ve cvičení lze v ojedinělých případech nahradit s povolením garanta vypracováním náhradní písemné práce dle pokynů.

Použití předmětu ve studijních plánech

Program M2I-P: Strojní inženýrství, magisterský navazující
obor M-VSR: Výrobní stroje, systémy a roboty, volitelný (nepovinný)

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Osnova

1. Úvod do automatizace. Logické řízení, logické funkce, pravidla Booleovy algebry, vyjádření Booleovských funkcí, minimalizace pravidly Booleovy algebry a Karnaughovou mapou.
2. Kombinační a sekvenční logické obvody, programovatelné automaty.
3. Spojitý regulační obvod, princip regulace, vnější a vnitřní popis, Laplaceova transformace, diferenciální rovnice, přenos.
4. Impulsní funkce a charakteristika, přechodová funkce a charakteristika, dělení regulačních členů.
5. Frekvenční přenos, frekvenční charakteristiky v komplexní rovině a v logaritmických souřadnicích, póly a nuly, bloková algebra.
6. Regulátory, regulační obvod, charakteristická rovnice (stabilita), základní metody nastavení regulátorů.
7. Stabilita regulačního obvodu (nutná a obecná podmínka), kritéria stability.
8. Kvalita a přesnost regulace, syntéza regulačního obvodu.
9. Diskrétní regulační obvod, vzorkovač, tvarovač, Z-transformace, diferenční rovnice.
10. Z-přenos, diskrétní impulsní funkce a charakteristika, diskrétní přechodová funkce a charakteristika, frekvenční přenos, frekvenční charakteristika v komplexní rovině.
11. Bloková algebra diskrétních systémů, číslicové regulátory (polohový a přírůstkový algoritmus), stabilita diskrétního regulačního obvodu (obecná podmínka).
12. Použití číslicového regulátoru v řídicích systémech.
13. Instrumentace řídicích systému.

Cvičení s počítačovou podporou

26 hod., povinná

Osnova

1. Logické řízení (algebraická minimalizace logické funkce, bloková schémata, seznámení se Siemens LOGO!Soft).
2. Logické řízení (slovní zadání, pravdivostní tabulka, minimalizace Karnaughovou mapou, kombinační logické obvody – simulace).
3. Logické řízení (sekvenční logické obvody – simulace).
4. Logické řízení (realizace modelové úlohy).
5. Spojité lineární řízení (diferenciální rovnice, přenos, impulsní a přechodová funkce, impulsní a přechodová charakteristika, simulace).
6. Spojité lineární řízení (frekvenční přenos, frekvenční charakteristika v komplexní rovině, frekvenční charakteristiky v logaritmických souřadnicích, simulace).
7. Spojité lineární řízení (bloková algebra, regulátory, simulace).
8. Spojité lineární řízení (regulační obvod, stabilita regulačního obvodu, simulační verze Ziegler-Nicholsovy metody, simulace).
9. Spojité lineární řízení (početní verze Ziegler-Nicholsovy metody, kritéria stability regulačního obvodu, simulace).
10. Spojité lineární řízení (přesnost regulace, kvalita regulace, simulace).
11. Modelová úloha z oblasti spojitého lineárního řízení.
12. Zápočtová písemka.
13. Zápočet, oprava zápočtové písemky.