Detail předmětu
Fyzika I
FSI-2F Ak. rok: 2020/2021 Letní semestr
Základní zákony a teorie klasické a moderní fyziky, které tvoří základ inženýrských disciplin.
Klasická mechanika. Pohyb částice (rychlost, zrychlení). Dynamika částice, Newtonovy zákony. Práce a energie, konzervativní a nekonzervativní síly, potenciál. Dynamika soustavy částic a tuhého tělesa, dynamika rotujícího tělesa. Gravitační pole. Kmity a vlny, harmonický oscilátor, postupná a stojatá vlna, vlnová rovnice, interference vln. Termodynamika, teplo, kinetická teorie plynů, entropie, tepelné motory.
Jazyk výuky
čeština
Počet kreditů
7
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Znalost základů klasické a moderní fyziky na univerzitní úrovni v oblasti klasické mechaniky, nauky o kmitavém pohybu a vlnění, nauky o gravitačním poli a termodynamiky. Pochopení obecných fyzikálních principů a schopnost aplikovat je na konkrétní fyzikální soustavy. Schopnost provádět fyzikální výpočty aplikací vektorového, diferenciálního a integrálního počtu.
Prerekvizity
Znalosti a dovednosti středoškolské matematiky a fyziky. Základy vektorového, diferenciálního a integrálního počtu.
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách. Výuka je doplněna laboratorním cvičením.
Způsob a kritéria hodnocení
Podmínky udělení zápočtu: alespoň 11 bodů v C1 a alespoň 6 bodů v L, maximálně lze získat 31 bodů. V případech hodných zvláštního zřetele (zejména s ohledem na aktivitu studenta ve cvičeních) může vyučující stanovit náhradní podmínky pro získání zápočtu, které však nezvýší počet dosažených bodů.<br>
Písemná část zkoušky je povinná pro všechny (15 testových otázek s výběrovými odpověďmi, 3 příklady, max 60 bodů), pokud při ní student získá méně než 30 bodů, pak u zkoušky neuspěl.<br>
Ústní části zkoušky se mohou dobrovolně podrobit studenti, kteří uspěli v předchozích částech. Ústní část je hodnocena celkem -10 až +10 body.<br>
Klasifikační hodnocení studenta (A – F) odpovídá celkovému dosaženému počtu bodů v souladu se Studijním a zkušebním řádem VUT. Podrobnosti na serveru <a href=http://physics.fme.vutbr.cz/files/vyuka/F1/FYZIKA1full.pdf>Physics.fme.vutbr.cz</a>.
Učební cíle
Cílem předmětu je seznámit studenty se základními zákony a teoriemi klasické a moderní fyziky tak, aby byli schopni je samostatně aplikovat na jednoduché systémy, objasnit a předpovědět jejich chování. Dalším úkolem předmětu je ukázat studentům, že fyzika tvoří teoretický základ a východisko inženýrských disciplin.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast ve cvičení je kontrolována. V teoretickém cvičení (C1) jsou zařazeny 3 kontrolní práce (KP, vždy 2 testové otázky s výběrovými odpověďmi, 2 příklady, max 7 bodů).
V laboratorním cvičení (L) je nezbytné absolvovat stanovené laboratorní úlohy a body se udělují za domácí přípravu, vedení laboratorního sešitu a zprávy o samostatných úlohách (celkem max 10 bodů).
V případě neúčasti na KP, která bude omluvena závažnými a doloženými důvody (zejména nemoc), může student požádat učitele o náhradní KP, která bude jednotně pro celý ročník v zápočtovém týdnu.
V případě neúčasti v laboratorní výuce, která bude omluvena závažnými a doloženými důvody (zejména nemoc), učitel studentovi stanoví náhradní termín pro vypracování úlohy.
Použití předmětu ve studijních plánech
Program B-ENE-P: Energetika, bakalářský, povinný
Program B-MAI-P: Matematické inženýrství, bakalářský, povinný
Program B-MET-P: Mechatronika, bakalářský, povinný
Program B-ZSI-P: Základy strojního inženýrství, bakalářský
specializace MTI: Materiálové inženýrství, povinný
Program B-ZSI-P: Základy strojního inženýrství, bakalářský
specializace STI: Základy strojního inženýrství, povinný
Typ (způsob) výuky
Přednáška
39 hod., nepovinná
Vyučující / Lektor
Osnova
Měření. Mezinárodní soustava jednotek, základní a odvozené jednotky. Přímočarý pohyb. Grafické integrování při analýze pohybu. Vektory, jejich sčítání a násobení.
Dvojrozměrný a trojrozměrný pohyb, rychlost a zrychlení, rovnoměrný pohyb po kružnici. Vzájemný pohyb.
Síla a pohyb. Newtonovská mechanika. Inerciální vztažné soustavy. První, druhý a třetí Newtonův zákon. Některé typy sil. Užití Newtonových zákonů.
Práce a kinetická energie. Teorém o práci a kinetické energii. Práce gravitační síly. Práce pružné síly. Práce proměnné síly. Výkon.
Potenciální energie a zákon zachování energie. Konzervativní a nekonzervativní síly. Určení hodnot potenciální energie gravitační a pružné. Práce vnějších a nekonzervativních sil.
Soustavy částic a tuhé těleso. Střed hmotnosti. Hybnost. První impulzová věta. Srážky částic.
Rotace tuhého tělesa a valení. Veličiny charakterizující otáčivý pohyb. Moment setrvačnosti. Moment síly. Moment hybnosti. Druhá impulzová věta. Zákon zachování momentu hybnosti.
Rovnováha a pružnost. Těžiště a střed hmotnosti. Tah a tlak, smyk a všestranný tlak. Hookův zákon.
Gravitace. Newtonův gravitační zákon. Princip superpozice. Gravitační potenciální energie. Planety a družice: Keplerovy zákony.
Tekutiny. Tlak. Pascalův zákon. Archimedův zákon. Rovnice kontinuity. Bernoulliova rovnice.
Kmity. Harmonický pohyb, pohybová rovnice, energie. Torzní kmity. Kyvadla. Tlumený oscilátor. Nucené kmity a rezonance.
Vlny. Druhy vln. Vlny příčné a podélné. Postupná harmonická vlna. Vlnová rovnice. Princip superpozice. Interference vln. Stojaté vlny a rezonance. Zvukové vlny. Zázněje. Dopplerův jev.
Termodynamika. Nultý zákon termodynamiky, teplota a tepelná rovnováha. Práce a teplo. Vnitřní energie a první zákon termodynamiky, jeho aplikace. Ideální plyn (stavová rovnice, tepelné kapacity). Druhý zákon termodynamiky a entropie. Vratné a nevratné děje. Carnotův motor a jeho účinnost. Chladnička a tepelné čerpadlo.
Laboratorní cvičení
13 hod., povinná
Vyučující / Lektor
Ing. Petr Bouchal, Ph.D.
RNDr. Libuše Dittrichová, Ph.D.
Ing. Jakub Holobrádek
Ing. Tomáš Krajňák
doc. Ing. Jindřich Mach, Ph.D.
doc. Ing. Pavel Pořízka, Ph.D.
Ing. Michal Potoček, Ph.D.
Ing. Katarína Rovenská
Ing. Petr Řehák, Ph.D.
Ing. Miroslav Stibůrek
Ing. Tomáš Strapko
Ing. Štěpán Šustek, Ph.D.
doc. Ing. Tomáš Zikmund, Ph.D.
Ing. Jakub Zlámal, Ph.D.
Osnova
1. Účinnost tepelného stroje: Stirlingův motor.
2. Numerická integrace pohybové rovnice: torzní kmity.
3. Vytvoření modelu: vlny v trubicích.
4. Numerické a grafické řešení: ohřev při tepelných ztrátách.
Cvičení
26 hod., povinná
Vyučující / Lektor
doc. Ing. Miroslav Bartošík, Ph.D.
prof. Ing. Jan Čechal, Ph.D.
Ing. Miroslav Ďuriš, Ph.D.
Ing. Michal Horák, Ph.D.
Ing. Martin Hrtoň, Ph.D.
Ing. Petr Jákl, Ph.D.
doc. Mgr. Vlastimil Křápek, Ph.D.
Ing. Michal Kvapil, Ph.D.
Ing. David Nezval, Ph.D.
Ing. Jan Novotný, Ph.D.
prof. RNDr. Jiří Petráček, Dr.
Ing. Karel Slámečka, Ph.D.
prof. RNDr. Jiří Spousta, Ph.D.
Ing. Jan Staněk
Mgr. Jitka Strouhalová
prof. RNDr. Pavel Šandera, CSc.
Ing. Jakub Vrábel
Osnova
Příklady jsou označeny podle základní literatury [1]:
1. téma: Vektory – opakování
2. téma: Pohyb částice
3. téma: Síla a pohyb
4. téma: Práce a energie
5. téma: Soustavy částic
6. téma: Rotace a valení
7. téma: Gravitace
8. téma: Kmity
9. téma: Vlny
10. téma: Termodynamika